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Paper [ 11 describes a method for investigating the stability of steadystate motions of me- 
chanical system. This method enables one to obtain the sufficient, and in some cases the 
necessary, stability conditions. 

The present paper concern certain aspects and further possibilities of the above 
method, including its applicability to nonholonomic systems. Its relationship to the Chetaev 
method for constructing Liapunov functions is considered. The discneeion is illustrated 
with examples. 

Let us consider some mechanical system whose phase variables characterizing its 
position and velocities at any instant t (or some of these variables) are n, (r e: 1, . . . . a). 
We assume thatthe variables ~a are independent if the system is holonomic, or that they 
may be related by borne nonintegrable constraining equations if the system is nonholonomic. 
As these variables we can take, for example, the Lagrange variablee of the system q,-, qi; 
other possibilities are to take certain nonholonomic coordinates or quasi-coordinates. 

Let us assume that some number of independent first integrals 

Fj, (x1, . ..) su) = ci (i = 1 , ***7 m, m < 4 (1) 
not explicitly dependent on time are known for the differential equations of motion of the 
system written in one way or another; c are arbitrary integration constants. 

Let us recall the theorem of Routhf2] with Liapunov’s important addendum [3]. 

The o t e m. If some number of integrals not explicitly dependent on time has been 
obtained for the differential equations of motion of some system, and if among these inte- 
grals there is one which has a minimum or a maximum for all the given values of the re- 
maining integrals as well as for all of their values which are sufficiently close to the given 
ones, and, finally, if the values of the variables in the integral which deliver its extremum 
are continuous functions of the values of these integrals, then the motion of the system 
for certain values of the variables which minimize or maximize the integral in question for 
the given values of the other integrals is stable with respect to these variables br all 
sufficiently small perturbations. 

Liapunov did not prove this theorem, apparently regarding it as self-evident. It is 
possible, in fact, to adduce a very simple proof [4], whose idea can be stated briefly as 
follows. 

Let Fl (51, . . . . zn) = c;. be the integral referred to in the theorem. 
Since, by hypothesis, this integral has a minimum or maximum both for given values of 

the constants c. = 
I ci” and for all sufficiently close valuescj = cj” + Acj (i = 2, . . . . m).of 
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the remaining integrals, the function 

is a sign definite function of the variables 

Ax, = x8 - xS* 

which satisfies all the conditions of the Liapunov stability theorem (V f 0). Here %a* 

denote the values of the variables xS corresponding to the minimum or maximum of the 
function Fr (xt, . . . . 2,) for the perturbed values of the constants cj = cj” -!- A+. By 
virtue of the continuous dependence of the values of xe which minimize or maximize the 
function F, on the constants ci of the remaining internals. we can clearly choose our 
perturbations so small that the nnpertarbed motion sb = x9’ of the system will lie in the 
neighborhood of the minimum or maximum of the function F, for the perturbed values of the 
constants e . = c .* + AC .*. This fact implies the stability of the unperturbed motion xa = .xgo 
with respec ( 1 to i for all sufficiently small perturbations. 

Following ]5?, we shall call the Roath theorem together with Liapunov’s addendum the 
‘Roath-Liapunov theorem’. 

it is important to note thatin proving tbfs theorem we did not assume that the system 
was holonomic. This meaus that the Roath-Liapanov theorem is valid for both holonomic 
and nonholonomic systems. 

In many problems in mechanics the integral which can have a minimum for the given 
values of the constsnts of the other first integrafs is osaally the integral H = 7’ - U = const 
of the system energy. 

Another proof of the theorem with special reference to the energy integral for a 
holonomfc system with cyclical coordinates is given in [6], where it is assumed that the 
Hamiltonian H is holomorphic in the neighborhood or the steadystate motion. A special 
case in which the Ronth theorem is applicable to nonholonomic systems is considered in 
notice [7] using the Rot&r method for ignoring the cyclical coordinates. 

If cyclical coordinates of the system are involved, ignoring them gives rise to an 
altered potential energy of the system, and the Ron&Liapunov theorem can be formulated 
somewhat differently, e.g. in the form of Theorem 4 of [4]. We must bear in mind, however, 
that there are cases when with a certain choice of the Lagrange coordinates q not all of 
the known first integrals (1) of the system linear with respect to the velocitie d,i. q corres- 
pond to the cyclical coordinates. In snch cases it is better to use the above fo alation 
of the Routh-Liapunov theaem rather than the Routh theorem in the form of [8] or of 
Theorem 4 of [4] in dealing with the energy integral obtained by ignoring the cyclical co- 
ordinates. 

We can illustrate this by means of an example. 

Exomp 1 c 1. The equations of rotational motion of a symmetric projectile (cf. [RI, 
pp. 108-111) admit of an energy integral H I const and of two integrals Fi = const (i = 1,2) 
linear with respect to the velocities; only the second of these integrals, p = const, corres- 
ponds to the cyclical coordinate o. In the case of anpertnrbed motion a= R = CC = R’ = 0 
the function W t ta cos aces B does not have a minimum. However, the integral N = const 
clearly has a minimum for fixed values of the two other integrals provided the Majewski 
condition Aapr - 4aB > 0 is fulfilled. 

In connection with this example we recall [9] that integrals linear with respect to the 
velocities q.’ 

I 
are exhibited only by holonomic systems which either have cyclical co- 

ordinates or can be transformed into systems with cyclical coordinates, which makes it 
possible to find an extended point transfo~ation of the variables qi into the variables Qi 
such that all integrals of the form (1) linear with respect to the velocities correspond to 
the cyclical coordinates Q,. In this case the formulations of the Routh-Liapunov theorem 
under consideration are clearly equivalent if the minimizable integral happens to be the 
energy integral. 

Let us set down two addenda to the Routh-Liapunov theorem. 
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A dd e n d II m 1. The theorem remains valid even if motion of the system involves 

energy dissipation and if the energy integral does not exist, provided that the energy H 

of the system (or of part of the system) satisfies the remaining requirements of the theorem 

and that the derivative of H with respect to time is nonpositive by virtue of the equations 

of motion. 

In fact, taking the energy H as our fonction Ft and considering a function V of the form 

(2). we see that the above proof of the theorem remains valid, since V’ 5 0. 

E r amp 1 e 2. The equations of motion along a horizontal plane of a heavy gyrostat 

with a spherical base (e.g. cf. [IO]) admit of the energy relation H 2 const (the equality 

sign applies in the case of an absolutely rough or an absolutely smooth plane) and of two 

integrals Fi z const (4.10) and (4.11), of which the first corresponds to the cyclical co- 

ordinate $I only if the center of mass of the gyrostat coincides with the center of the spher- 

ical base [7]. The function H has a minimum for fixed values of the first integrals Fi = const 

if condition (4.18), i.e. 

( c - A f ) PrJZ + C$.r, + Mg $ > 0 (l = a - a1 > 0) 

is fulfilled. 

A d d e n d u m 2. The Routh-Liapuniv theorem remains valid if some of integrals (1) 

depend explicitly on time provided these integrals can be reduced by ordinary variable 

substitution to equations not containing time explicitly. 

E z amp 1 e 3. The equations of motion of a dynamically symmetric gyrostat with a 

fixed point in the form of a solid body with a rotor acted on by external forces with the 

potential energy V (y,) and by certain internal forces admit of the first integrals [IO] 

H = A (pa + qa) + 2V (ys) = const, Fr = A (pyl + tzyz) f [Cr -t k (01~~ = con% 

F, = yl” + yz? + ys” - 1 = 0, F, = Cr + k (t) = con& 

The second and fourth of these integrals depend explicitly on time by way of the variable 

gyrostatic moment k (t) which is determined by the internal forces and is assumed to be 

continuous. The function V (y,) is assumed to be bounded and continuous and to have 

continuous and bounded first- and second-order derivatives. 

Replacing the variable r by the new variable R according ta the formula 

Cr + k (t) = R 

we reduce these integrals into integrals not explicitly dependent on time. Setting R = R. 

and considering the function cf~ = H + 2hF, + pF, (fp = --hXoV’ (1)) (A is an 

arbitrary constant) we find that it has a time-independent value at the point determined by 

the following values of the variables: 

p = q = 0, yr = 1’? = 0, I’:, L: * f 

This point corresponds to rotation of the gyrostat about the stationary axis [with the 

variable angular velocity 

r = -& (I&, - /I. (/,) 

The minimum conditions for the function H reduce to the inequality 

I!,,’ -F /IA i“ (1) > 0 

which is a sufficient condition of stability of the gyrostat motion under consideration. 

Similar transient motions which depend explicitly on time are possible in the case of a 



symmetric gyrostatic satellite in a central Newtonian force field 141. 
As is clear from the formulation of the Routh-Liapnnov theorem, its application involves 

solution of the following three problems: 1) finding the time-independent points of the 
function F, for the given fixed values of the cbnatants Ej (j = 2, . . . , m) of the remaining 
first integrals (1) corresponding to the tme motions of the system; 2) determination of the 
conditions under which a given time-independent point corresponds to the minimum or 
maximum of the function F,; 31 verification of the requirement of continuous dependence 
on the quantities C. of the coordinates of the pain&~&responding to the minimum or 
maximum of the fun&ion Ft. 

We note that the conditions resulting from solution of the first two of these problems 
ensure (by virtue of the Routh theorem) the stability of the unperturbed motion at least 
for those perturbations which do not alter the quantities cl (j = 2, ,,. , m). Fulffllment of 
the conditions of the third problem in addition to those of the first two ensures unconditional 
stability (by virtue of the Liapunov addendum). 

By introducing the Lagrange multipliers Xj we can reduce the first problem to that of 
the unconditional extremum of the funtition 

Let us assume that we have found values 

satisfying Eqs. 

a!E A) 
a_r, 

(s z-z 2, , l&f, Fj (21, * . ., cell) = Cj” (i=f, .‘. .,m) 

(4) 

15) 

We denote the value of the function @ corresponding to values (4) by 

(1, Q, (XIO, . . . . x,t’, h%Q, . ..( h,“). 

Let us consider the function 

which, by virtne of Eqa. (5). clearly does not contain terms linear with respect to the vari- 
ations of the variables ~a in the neighborhood of soIution (4). If V under some conditions 
is a sign definite function in the neighborhood of the solution aa = xSo, then the function 
@ for the solution under consideration has an unconditional minimum, or maximum and the 
function fi has a conditional minimum or maxivm. Bat the expressions 

I/j = Fj - Fj” =t con&. 

are clearly the fimt integrals of the equations of perturbed motion of the system, as is 
function (6). which can be rewritten as 

I” = Vl + ~ hj"Vj (7) 
jis 

The form of this function points to a relationship betwssn the Routh-Liapunov theorem 
and the effective method of Chetaev for conatmcting the Liapunov functiona as a bundle of 
hewn fbt integrals Yj = conat of the equations of perturbed motion. The Chetaev method 
consists in constructing a Liapunov function of the form 
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where the constants hi (j = 2, . . . . m), p, (a = 1, . . . . m) are chosen in such a way that 
(8) is a sign definite fnnctioa. By the choice of the mnltipliers 

hip 
neither (8) nor (6) con- 

tain terms linear with respect to the variations of the variables xe (otherwise they could 
not be the sign definite expressions). It is clear that with the coefficients 

+ 
chosen in this 

way, their role in Expression (8) is similar to that of the Lagrange multipliers in variational 
problem (6). 

In the case where all of the ~,(a = I, . . . , m) are equal to zero and where Xi E Aje 
(j = 2, . . . , m), Liapunov function (8) is identical with function (7). If (7) also happens to 
be a sign definite function then (since V’ = 0) it satisfies all the conditions of the 
Liapunov stability theorem. Hence, the sign definite conditions for function (7) which, as 
noted above, ensure the conditional minimum or maximnm of the function F,, are sufficient 
conditions of unconditional stability of unperturbed motion. Because of this, the third of 
the above problems (i.e. the verification of continuous dependence of the coordinates of 
the extremum points of the function F, on the values of Cj) is in this case superfluous. 

We note that the sufficient conditions of a conditional mininm or maximum of the 
function F are also obtainable from the sign definite conditions for function (7) on linear 
manifolds 111 s 

(j=2,...,rn) 

The number of conditions (9) is smalls than the number of conditions for arbitrary 
values of the variations of x$. The difference between these numbers amounts to m - 1 
conditional independent Eos. (9). In general, the latter can be broader than the conditions 
of an unconditional extremum of this fnnction [s]. 
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